#### Revisiting EW Constraints at a Linear Collider



- S. Heinemeyer P. Rowson
- G. Weiglein M. Woods
- K. Moenig B. Schumm
- R. Hawkings D. Gerdes
- G. Wilson L. Orr

U. Baer

+ many others

Lawrence Gibbons Cornell University





Why improve EW parameters?

ω





- Large  $\Gamma_{\dagger}$  (~1.4 GeV) a boon
- shape  $\Gamma_{\dagger} \gg \Lambda_{QCD} \Rightarrow$  no narrow resonances, smooth line
- Allows calc. in pert. QCD







# A few short-distance mass def's near threshold



1S peak position stable to ~200-300 MeV

Masses related to MS mass via pert. QCD series

Modest luminosity required

10 fb<sup>-1</sup>  $\rightarrow \pm$ 40 MeV stat. uncertainty

7 Jan 2002

Chicago LC Workshop

M<sub>t</sub> to ±200 MeV

# Other top measurements

#### Threshold

- Total top width
- Peak  $\sigma \sim 1/\Gamma_{+}$
- 100 fb<sup>-1</sup>  $\rightarrow$  ~2% uncertainty
- Yukawa coupling
- | 115 GeV Higgs → 5-8% increase in threshold σ
- 2-3% uncertainty in predicted cross section
- 14-20% on Yukawa
   coupling
- Sensitivity drops for increasing Higgs mass

#### High energy

- Vukawa coupling
- $e^+e^- \rightarrow tth \rightarrow W^+W^-bbbb$
- | 800 GeV (1000 fb<sup>-1</sup>): ~5.5%
- 500 GeV: ~4x worse
- All neutral and charged current couplings
- Measure/limit mostform factors at 1% level
- 500 GeV, 100-200 fb<sup>-1</sup>
- ttZ couplings unique to LC
- production polarization asymm.

### Test QCD, EW radiative corr.

### $\sigma(e^+e^- \rightarrow tt \rightarrow lvjjbb)$ to < 1%







### At Z pole: dominated by

sin<sup>2</sup>0<sub>w</sub> status

- LEP b quark A<sup>b</sup><sub>FB</sub>
- I SLD A<sub>LR</sub>
- A<sup>b</sup><sub>FB</sub>: not in best agreement w/ SM
- Lower energy scales

- I Recent NUTEV result
- "3σ high"
- atomic parity violation
- ~2 σ low



## Revisit Z pole with a linear collider

- I Expect  $2 \sim 5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- $10^9$  Z decays in ~  $10^7$  s
- Could contemplate interruption of high energy program
- 10<sup>10</sup> Z decays: 3-5 year program
- Would need simultaneous low energy/high energy running
- Mainly heavy flavor program benefits
- Polarization
- 80% electron polarization a given
- positron polarization an enormous boon: achievable?
- 60% polarization desirable





### ALR → sin<sup>2</sup>θ<sub>w</sub>: experimental issues

- polarization
- Blondel scheme: need *relative* L,R polarizations to 10<sup>^-4</sup>
- Appears feasible
- Systematics: polarimeters after IP?
- Difficult w/o crossing angle
- Can positron helicity be switched rapidly enough relative to beam stability?
- What is the relevant time scale?

### ALR → sin<sup>2</sup>θ<sub>w</sub>: experimental issues

- Z-y interference: A<sub>LR</sub> changes rapidly away from pole Control  $\delta E/E$  to  $10^{-5}$
- Control of beamstrahlung (effective  $\sqrt{s}$  shift)
- Ignore: A<sub>LR</sub> shift of 9x10<sup>-4</sup> at TESLA, much worse at NLC
- E scale from Z pole scan + LEP M<sub>Z</sub>. Same beam parameters?
- Trade  $\mathcal{L}$  for reduced beamstrahlung
- NLC:125→18 MeV E shift for factor 5 ⊥ penalty

## If beam issues controlled:

### $sin^2\theta_W$ to $\pm 0.000013$





7 Jan 2002

Chicago LC Workshop

| 7 Jan 2002 Chicage | $\Delta m_s$ | <ul> <li>Great potential</li> <li>Production flavor tagging <ul> <li>ED<sup>2</sup>~0.6 vs 0.1-0.25</li> <li>D=1-2P(mistag)</li> </ul> </li> <li>Large boost <ul> <li>b's well-separated</li> <li>Excellent b tagging</li> </ul> </li> <li>Well-defined initial state: <ul> <li>"v-reconstruction"</li> </ul> </li> <li>Stiff competition <ul> <li>Mainly cross checks others on "standards"</li> <li>CKM unitarity angles</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b physics at Giga |
|--------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 14 LC Workshop     |              | $\frac{\operatorname{inistag} \operatorname{fraction}}{\operatorname{out}} \qquad \frac{\operatorname{dc/dcos\theta}}{\operatorname{out}} \qquad \frac{\operatorname{dc/dcos\theta}}{\operatorname{dc/dcos\theta}} \qquad \frac{\operatorname{dc/dcos\theta}}{\operatorname{dc/dcos\theta}} \qquad \frac{\operatorname{dc/dcos\theta}}{\operatorname{dc/dcos\theta}} \qquad \frac{\operatorname{dc/dcos\theta}}{\operatorname{dc/dcos\theta}} \qquad \frac{\operatorname{dc/dcos\theta}}}{\operatorname{dc/dcos\theta}} \qquad \frac{\operatorname{dc/dcos\theta}}{\operatorname{dc/dcos\theta}} \qquad \frac{\operatorname{dc/dcos\theta}}{\operatorname{dc/dcos\theta}} \qquad \frac{\operatorname{dc/dcos\theta}}{\operatorname{dc/dcos\theta}} \qquad \frac{\operatorname{dc/dcos\theta}}{\operatorname{dc/dcos\theta}}  \frac{\operatorname{dc/dcos\theta}}}{\operatorname{dc/dcos\theta}} \qquad \frac{\operatorname{dc/dcos\theta}}{\operatorname{dc/dcos\theta}} \qquad \frac{\operatorname{dc/dcos\theta}}}{\operatorname{dc/dcos\theta}} \qquad \frac{\operatorname{dc/dcos\theta}}{\operatorname{dc/dcos\theta}}  \frac{\operatorname{dc/dcos\theta}}{\operatorname{dc/dcos\theta}}  \frac{\operatorname{dc/dcos\theta}}}{\operatorname{dc/dcos\theta}}  \frac{\operatorname{dc/dcos\theta}}{\operatorname{dc/dcos\theta}}  \frac{\operatorname{dc/dcos\theta}}}{dc/dco$ | -N.               |

| Some unique b physics                                                                                      |
|------------------------------------------------------------------------------------------------------------|
| B <sub>s</sub> →Xlv rate                                                                                   |
| Constrain uncontrolled uncertainty in OPE from quark-hadron duality violations                             |
| Polarized A <sub>b</sub> decays (G. Hiller)                                                                |
| Probe $b_R \rightarrow q_L \gamma$ (SM) vs $b_L \rightarrow q_R \gamma$ (new physics)                      |
| $I = I \cup I \cup I \cup I \cup I$ gives interesting reach in $\Theta(\text{spin}, p_{\gamma})$ asymmetry |
| I Emiss constraints + well-separated b decays allow access                                                 |
| Non-SM physics affects X <sub>s</sub> vv, X <sub>s</sub> l+l- differently                                  |
| I reach? B→tv bkg?                                                                                         |
| Production flavor tagged B→π <sup>0</sup> π <sup>0</sup>                                                   |
|                                                                                                            |

## W+W- threshold: Mw

- Potential indirect precision:  $\delta M_W \sim \pm 4$  MeV
- Tevatron/LHC: expect 15-20 MeV precision (syst. limited)
- EW constraints: can LC approach indirect precision?
- E<sub>beam</sub>, beamstrahlung appear to be most serious issues

high energies: direct reconstruction needs E<sub>beam</sub> constraint

- E scale likely to be pinned via  $\ensuremath{M_Z}$
- Beamstrahlung scales as  $(E_{beam})^{\frac{r}{2}} \Rightarrow$  explore threshold region
- Threshold needs:
- $E_{beam}$  to 10<sup>-5</sup>: potentially  $e^+e^- \rightarrow \gamma Z$ ,  $Z \rightarrow \mu \mu$ , ee?
- Stat's for  $\sqrt{s}$  vs time?
- Beamstrahlung: control shape distortion to 0.12% ++ 2 MeV
- Bhabha acolinearity?
- Theory: cross section shape to 0.12%





Chicago LC Workshop

18

#### 7 Jan 2002 Constraint potential: S,T,U S,T,U Sensitivity (now→LC/GigaZ) Peskin, Wells (PRD 64, 093003) Parameterize effect of new $U: \pm 0.15 \rightarrow \pm 0.04$ S: $\pm 0.11 \rightarrow \pm 0.05 (\pm 0.02 \text{ w/ U=0})$ T: $\pm 0.14 \rightarrow \pm 0.06 (\pm 0.02 \text{ w/ U=0})$ EW variables linear fcn's of STU physics on W, Z vacuum pol. Survey models w/ heavy Higgs: observable w/ GigaZ Significant dev's in S,T from SM т -0.4 -0.2 -0.2 0.0 20 eg. technicolor S, T > ~0.1 5 deviation from SM -0.1 2000 0.0 S 0.1 M. Peskin, J. Wells б 20 LHC 0.3



Chicago LC Workshop

### Conclusion

- Low energy program adds great value to the overall LC and general HEP program
- Powerful constraints provide
- Self-consistency checks for interpretation of new particles
- Extension of effective mass reach
- Unique flavor physics contributions a bonus
- study Beam energy and polarization issues need further
- Solutions will involve monitoring instrumentation that must be allowed for in baseline designs