

Linear Collider Luminosity

R. Brinkmann, DESY LC Workshop Chicago, Jan. 7-9, 02

Acknowledgement

- Most of what will be presented here is work done by other colleagues in the different LC design groups worldwide. I am grateful for numerous fruitful discussions and exchange of information and ideas over the past years.
- This is a brief summary of some aspects regarding luminosity for both "warm" and "cold" LC's. A much more comprehensive performance comparison is presently worked out by the International Linear Collider Technical Review Committee ("Greg Loew Committee").

Basic limitations and scaling

- Beam power determined by reasonable max. wall plug power P_W and transfer efficiency η_{AC→beam}
- Beamstrahlung energy loss δ_B and background at IP
- Beam emittance need to generate and preserve!

$$L = f_{coll} \cdot \frac{N_e^2}{4\pi\sigma_x \sigma_y} = \frac{1}{4\pi E_{cm}} \left[f_{rep} n_b N_e E_{cm} \right] \cdot \frac{N_e}{\sigma_x} \cdot \frac{1}{\sigma_y}$$

$$\propto P_W \cdot \eta_{AC \to beam} \cdot H_D \cdot \left. \frac{\sigma_z}{\beta^*} \right|^{1/2} \cdot \sqrt{\delta_B} / \sqrt{\varepsilon}$$

Luminosity challenge: it's only 4 orders of magnitude from the SLC...

	SLC	X-band / TESLA	
Energy E _{cm}	100	500 (→ ~1000)	GeV
Beam Power	0.04	6.6 / 11	MW
Spot size at IP	500 (~50 FFTB)	2.7 / 5	nm
Beamstrahlung	0.03	4.7 / 3.2	%
Luminosity	3·10 ⁻⁴	2 / 3.4	10 ³⁴ cm ⁻² s ⁻¹

Efficiency: "warm vs. cold"

	TESLA	NLC
η wall plug → RF	46.8 %	29.8 %
η RF → beam	63.0 %	33.5 %
η wall plug (RF) → beam	29.5 %	10 %
Pwallplug for cooling	19.7 MW	(15 MW)
two-linac Pwallplug	95 MW	132 MW (+15)
two-linac P _{beam}	22MW	13.2 MW
total η wall plug → beam	23.3 %	10% (9)

Beamstrahlung and lumi spectrum

$$\delta_{B} \propto \frac{N_{e}^{2} \gamma}{\left(\sigma_{x} + \sigma_{y}\right)^{2} \sigma_{z}} \cdot U_{1}\left(E_{c}^{ph} / E_{beam}\right) \rightarrow \frac{N_{e}^{2} \gamma}{\sigma_{x}^{2} \sigma_{z}}$$

(Flat beam, low E_c^{ph})

Small # γ 's per e[±]: $\langle \mathbf{n}_{\gamma} \rangle \approx 1...2$ ($\propto N_e / \sigma_x$)

	TESLA500	NLC500
δ _в [%]	3.2	4.7
$\langle n_{\gamma} \rangle$	1.6	1.2
< >>	0.06	0.11
L _{99%} [10 ³⁴]	2.3 (68%)	1.4 (65%)

(ISR and $\sigma_{\text{E,beam}}$ not included)

Lower limit on β_y^* : synchr. rad. in quads (Oide 1988) and bunch length

Side remark: all LC's have flat beams – round beams might be nice, too!

- Suppose we could get small hor. emittance $\varepsilon_x = \varepsilon_y$, but with *unchanged phase space density* N_e/ε_x , i.e. low bunch charge
- \rightarrow collide round beams with $\beta_x = \beta_y$
- Better relation L vs. δ_B (ideally factor 2 higher L at same δ_B)
- Larger enhancement factor $H_D(round) \approx H_D^2(flat)$
- Single bunch wakefields strongly reduced

Main challenge:

injection system (conventional damping ring doesn't work) (other issues: very small bunch spacing, triplet at IP, ...)

Example round beams: CLIC 3TeV

	flat	round
N _e	$4 \cdot 10^{9}$	2·10 ⁸
Δt_{b}	0.667ns	0.033ns
ε _{x,y}	$0.68 \cdot 10^{-6} m$,	2 ⋅ 1 0 ⁻⁸ m
	2 · 1 0 ⁻⁸ m	
$\beta_{x,y}$	8mm, 0.15mm	0.6mm
σ _{x,y}	43nm, 1nm	2nm
σ	0.03mm	0.1mm
D _{x,y}	0.1, 5.2	4.7
$\delta_{\rm B}$	31%	28%
< Y >	8.3	2.5
H _D	2.1	4.1
L	$9.6 \cdot 10^{34}$	10.10^{34}
$\Delta \varepsilon / \varepsilon$ single	100% (?)	2%
bunch (scaled)		

Emittance preservation: main linac

Scaling of W_{trans} helps to understand differences in tolerances

- insufficient to understand beam dynamics in detail!
- Accurate alignment inside a cryostat is more difficult than outside
- diagnostics equipment can have better resolution in high-freq. than in low-freq. Linac (BPM's in small vs. large beam pipe)
- Effects causing emittance growth which are not (or not strongly) related to linac frequency (RF kicks, initial beam energy spread)
- High linac rep. rate helps to cope with mechanical vibrations (higher frequency lower amplitude)
- Limitations on making and preserving small emittance from subsystems other than main linac (e.g. beam delivery)
- More subtle differences: → "banana" effect at IP

Beam Break-up

- Head-to-tail defocusing effect of W_{trans} can lead to exponential growth of betatron oscillation amplitude (BBU instability) → apply BNS damping with correlated energy spread dE/E vs. z (autophasing condition cancels wakefield defocusing with chromatic focusing of quadrupole lattice)
- Remaining emittance growth from free oscillation is due to uncorrelated dE/E, filamentation and nonperfect autophasing

• TESLA is not in BBU regime – autophasing still helps to reduce sensitivity to orbit jitter: with expected ~0.5 σ pulse-topulse jitter \rightarrow correlated emittance growth $\Delta\epsilon/\epsilon \sim 0.1\%$

• NLC requires 0.6% correlated energy spread to avoid BBU

Beam based alignment

- BPM's can't be pre-aligned along a straight (or: smooth) line with sufficient accuracy → need beam based methods to reduce dispersive emittance growth from random orbit kicks (BPM-to-quad with "shunt" method, DF steering by varying quad strengths or beam energy, ...) → effectively replace BPM offset error by *BPM resolution*
- In strong wakefield regime, active alignment of accelerator structures is also required (*RF-BPM's* and *micro-movers*)

Linac tolerances & emittance growth

	TESLA	Δε/ε	NLC	Δ ε/ε
RF structures	300µm	4%	20µm	4%
Girders	200µm	20%	5µm	3%
# of RF BPM's p.	-		10,000	
linac				
# of micro-	-		1,700	
movers p. linac				
quad-BPM	10µm	4%	0.3µm	25%
resolution				
# of	360		800	
quads/BPM's p.				
		000/ (500/)		
total $\Delta \varepsilon/\varepsilon$ (budget DR \rightarrow IP)		28% (50%)		32% (75%)

"Plan B": wakefield and dispersion correction with steering bumps

	TESLA	NLC
Filamentation	~10%	full
# of ϵ -diagnostic stations	1 (+ lumi)	7 (+lumi)
reduce static emittance	< 2%	< 10%
growth to		

Simulation of wakefield bumps in TESLA

Multi-bunch effects

Avoid HOM-driven BBU by *detuning* and *damping* \rightarrow beam stability OK with tolerances specified by single bunch effects

Static part of HOM driven orbit pattern can be removed with fast correctors

14

TESLA: just program feed-forward table of 3MHz bandwidth intratrain feedback system...

12 10 Offset [um] 8 6 No initial bunch offset 2 Initial bunch offset = 18 um 0 0 100 200 300 400 500 **Bunch number**

NLC: several stations (filamentation!) with fast kickers (few 100Mhz) required Orbit motion in TESLA very small compared to cavity alignment errors \rightarrow HOM pattern is static

Ground motion

- Model for TESLA derived from HERA ground and orbit motion data
- rms amplitude
 ~70nm for f>1Hz,
 essentially
 uncorrelated
- Large amplitude for f<0.3Hz not critical because of large wavelength & strong correlation

6.3 km HERA ring in Hamburg

SLAC linac tunnel and SLD hall data

• Correlation vs. frequency similar as at HERA, but amplitudes smaller by factor 10...50

 Amplitudes increase in SLD hall by factor ~5 due to infrastructure (cooling, ventilation)

Slow diffusive motion

$$(\Delta y^2) \approx A \cdot T \cdot L$$

- HERA model, from orbit drift data (minutes to weeks):
- SLAC model from linac tunnel and FFTB measurements:

$$A = 4 \cdot 10^{-6} \,\mu m^2 (m \cdot s)^{-1} \qquad A = 5 \cdot 10^{-7} \,\mu m^2 (m \cdot s)^{-1}$$

Linac quadrupole position errors from ground motion (SLAC and HERA models)

	TESLA		NLC			
	HERA	SLAC to	olerance	HERA	SLAC	tolerance
quad jitter 10Hz	(1	not releva	nt)	8nm	0.5nm	10nm
quad jitter 1Hz	70nm	2nm	200nm	70nm	2nm	~few 10nm
quad alignment 1h ⁻¹	1.2µm	0.4µm	10µm	0.6µm	0.2µm	2μm
orbit feedback	intra-train at end of linac + pulse-to-pulse		pulse-to	-pulse, 5 -	- 10 sections	

Note: temperature drifts, time varying stray fields, etc. may not be negligible!

BDS

Beam Delivery and Final Focus

	TESLA	NLC
$\sigma_{x,y}$ at IP	553nm, 5nm	245nm, 2.7nm
$\beta_{x,y}$ at IP	15mm, 0.4mm	8mm, 0.1mm
type of FFS	FFTB-like	Raimondi
bunch spacing	337ns	1.4ns
correlated σ_{E}/E	0.05%	0.3%
uncorrelated σ_{E}/E	0.15% (e-), 0.05% (e+)	0.05%

Luminosity Stability

"Jitter": steering at IP

"Drift": spot size at IP

0.1

6-2001 8602A103 **Ground motion 10Hz:**

TESLA approach:

- Stabilize orbit at IP within 0.1σ in offset and angle with fast (3MHz) intra-train feedback
- Active stabilization of supports
 70nm→20nm at ~1Hz for few
 quads (spot size dilution
 15%→1.5%)
- Maintain spot size within few % with slow (pulse-to-pulse) orbit correction
- Luminosity tuning *(e+e- pair monitor)* by scanning orthogonal knobs within single bunch train ~once a day

NLC approach:

- Stabilize orbit at IP with pulseto-pulse orbit feedback, rely on small ground motion amplitudes at relatively high frequency
- Maintain spot size within few % with pulse-to-pulse orbit correction *(easier due to rep. rate)*
- Luminosity tuning by scanning orthogonal knobs ~once every few hours
- "Plan B": active stabilization of Final Doublet and/or very fast IP steering feedback

IP steering feedback (TESLA)

Lumi stability under ATL ground motion (TESLA)

Kink instability and "banana" effect

Y. H. Chin 1987: two-stream instability leads to exponential growth of oscillation amplitude for beams colliding with an offset

$$y_{e+(e-)}(t;z) = y_0 \exp\left[\omega t \pm i(\sqrt{3}\omega z - \pi/6)\right]$$

$$\omega = \frac{(2\pi)^{1/4}}{\sqrt{24}} \cdot \frac{\sqrt{D_y}}{\sigma_z}$$

→ Tighter tolerance on IP steering, but even more annoying...

Internal bunch deformations are also amplified – even if initial offsets and angles are zero *on average*

3-D

2-D vertical

Effect on TESLA luminosity: enhanced sensitivity to *correlated* emittance growth

Feedback detects net bunch deflection, depending on relative phase & shape of distortion \rightarrow steers beam *as if* there were an offset at the IP

Kink instability could be reduced with shorter bunch 0.3mm \rightarrow 0.15mm in TESLA; needs 2nd stage compressor, beamstrahlung 3.2% \rightarrow 3.9%, D_y ~ 14 as in NLC

NLC linac "banana" has shorter "wavelength" → lumi less sensitive (?)

Dispersive aberrations from BDS entirely correlated → lumi more sensitive

Conclusion

- Luminosity goals for TESLA and NLC are both at a reasonable upper limit
- The *same* value for *L* (say, NLC design value) is very likely easier to achieve for TESLA
- Beam dynamics in strong wakefield regime well understood, methods to guarantee beam quality well defined
- **Complexity and accuracy** of diagnostics and correction equipment for NLC substantially more demanding than for TESLA
- Higher rep. rate is a "+" for NLC regarding spot size stability in the FFS